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Abstract. The recurrence relation method of series analysis is tested on the 12 test functions 
recently used by Baker and Hunter to study various methods of series analysis. It is found 
that the recurrence relation method is demonstrably superior to other methods for about 
half the test functions, and that for no test function is it significantly worse than existing 
methods. 

1. Introduction 

In two recent articles Baker and Hunter (1973) critically reviewed most of the existing 
methods for the analysis of power series expansions that arise in theoretical physics. 
The principal thrust of their work was to study those methods particularly suited to the 
analysis of series which arise in lattice statistical problems. Following a critical review 
they developed a number of generalizations and extensions of existing methods. 

In order to compare various methods they used a number of example series that 
include, in various combinations, most of the types of singular behaviour generally 
conjectured for the lattice statistical thermodynamic functions. The test functions given 
by Hunter and Baker (1973) are reproduced in table 1. These functions were expanded 
to 10, 15 and 20 terms and then analysed in order to determine the principal critical 
exponent y = 1.5 and corresponding critical point x, = 1. The accuracy of the estimates 
was stated by evaluating the quantity E, = - lg p, where pn is the relative error in 
estimating one of the critical parameters from n terms in the series expansion. 

Table 1. Test functions A-L used to study the various methods of series analysis (from 
Hunter and Baker 1973). 

Function A 
Function B 
Function C 
Function D 
Function E 
Function F 
Function G 
Function H 
Function I 
Function J 
Function K 
Function L 
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The purpose of the present paper is to apply a new method of series analysis, called 
the recurrence relation method (Guttmann and Joyce 1972, Joyce and Guttmann 1973), 
to the example series given by Baker and Hunter, and thereby to compare this method 
with the existing methods. 

In general the new method is found to compare favourably with existing methods. 
For about half the test functions it gives better results than any existing method, while 
for no function are the results significantly worse than for existing methods. 

For a general guide to methods of series analysis other than the recurrence relation 
method, and an introduction to the whole problem of series analysis, reference should 
be made to Gaunt and Guttmann (1974). 

2. The recurrence relation method 

This method is described by Guttmann and Joyce (1972) and Joyce and Guttmann 
(1973). Briefly, in its simplest form, it involves fitting the available series coefficients 
co, c1, c 2 , .  . . , cn to a recurrence relation of the form 

M 

where Ao.2 = 1, Ao,o 3 0 and c-, = O ( n  > 0). The coefficients 

{ A o , l ;  A i , 2 ,  A i , l ,  Ai ,o;  i = 1,2 , .  . . , M }  

are determined quite readily from the series coefficients by solving a system of linear 
equations. This recurrence relation can then be solved by noting that if the coefficients 
c, satisfy (2.1), then the function defined by 

00 

f ( z )  = 1 cnz" (2.2) 
f l = O  

satisfies a second-order linear differential equation whose critical properties can be 
obtained by standard techniques (Ince 1927). Further details of the method are given in 
the references cited above. It should be pointed out, however, that the method is a 
natural generalization of the Pad6 approximant method applied to the logarithmic 
derivative of a series, since in that case the Pad6 method can be shown to be expressible 
as a first-order linear differential equation. The method receives its inspiration from the 
fact that the Onsager (1944) solution for the zero-field internal energy satisfies a recur- 
rence relation of the precisely assumed form, as shown by Joyce (unpublished). 

Without further ado we will demonstrate the application of this method to the 12 
test functions given in table 1. 

3. Numerical experiments 

For all 12 functions the principal critical point x, = 1, and the corresponding exponent 
y = 1.5. The three standard methods used by Hunter and Baker (1973) were the ratio 
method (R), which was then refined by the use of Neville tables (N), and the Pade approxi- 
mant method (P). Further, three new methods were given by Baker and Hunter (1973): 
the generalized Pad6 approximant method (GPA), the exponent renormalization method 
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(ER) and the confluent singularity method (cs). All these methods were applied to the 
given series by Baker and Hunter and the results which we quote for these methods are 
theirs. The results are compared with our recurrence relation (RR) method in the 
remainder of this section. 

In table 2 we compare estimates of the critical point x, by quoting E,, = - lg p n  
where p,, is the relative error in x, using n series coefficients. Note that while the results 
of Baker and Hunter are quoted for 10, 15 and 20 terms, the nature of the RR method is 

Table 2. Summary of analysis of the 12 test series for estimates of the critical point x, = 1.0. 
The numbers quoted are the values of the parameter c = -Ig(AxJx,).  

Test Number R N P GPA y = 1.5 RR Number 
series of terms [ l ,D,Ml  ER of terms 

used used in RR 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 

3.2 
8.1 

13.9 
2.3 
2.8 
3.1 
2.3 
2.5 
2.9 
1.7 
2.6 
3.6 
1.6 
2.4 
3.0 
1.5 
2.8 
3.0 
1.4 
1.6 
1.9 
1.6 
2.0 
2.2 
1 .o 
1.2 
1.5 
1.1 
1.7 
2.0 
1.1 
1.7 
2.0 
1.6 
1.9 
2.2 

2.7 
4.0 
4.8 

2.4 2.7 
3.8 3.9 
5.4 5.1 

2.5 
4.1 3.4 
5.7 4.0 

1.9 
2.2 
3.5 
1.3 
2.5 

3.9 3.7 
1.1 
1.4 
2.7 
1.3 
1.3 
2.7 
1.7 
1.8 
2.4 
0.9 
1.4 
2.2 

1.5 2.2 
2.2 3.5 
2.8 4.4 

0.7 
2.2 3.0 
2.6 3.9 
2.9 2.7 
3.3 3.2 
3.5 3.6 

> 10 

3.5 

3.1 

5.4 

3.8 

2.9 

2.3 

2.5 

1.6 

7.2 

6.5 
not 

given 

7.0 
> 7.0 
> 7.0 

2.5 
3.5 
4.0 
2.3 
3.1 
3.7 
3.1 
4.7 
7.0 
1.9 
3.2 
4.0 
1.9 
2.7 
3.1 
2.4 
3.3 
4.5 
2.2 
2.7 
3.2 
2.0 
2.2 
2.4 
6.7 

> 7.0 
> 7.0 

5.2 
> 7.0 
> 7.0 
not 

given 

> 13 
> 13 
> 13 
> 13 
> 13 
> 13 

3.2 
4.1 

> 13 

2.0 
4.0 

2.0 
3.6 
0.9 
1.7 
5.4 
3.2 
2.1 
2.0 
2.7 
2.8 
2.0 
2.0 
1.7 
2.6 

- 

- 

> 13 
> 13 
> 13 

2.4 
3.2 
5.3 

> 13 
> 13 
> 13 

10 
13 
19 
10 
13 
19 
10 
13 
19 
10 
13 
19 
10 
13 
19 
10 
13 
19 
10 
13 
19 
10 
13 
19 
10 
13 
22 
10 
13 
19 
10 
13 
19 
10 
13 
19 
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such that the number of coefficients at each step increases by three; hence our results 
are for 10,13 and 19 terms, except for the isolated case of series I, where due to a numerical 
difficulty we have given the result cz2 instead of cI9. A dash in the RR column indicates 
that no singularity on the positive real axis is predicted in that approximation. Our 
computer program prints out estimates to only 13 significant digits, hence the maximum 
value of Q, that can be obtained is 13. 

From table 2 we see that with only 10 coefficients, functions A, B, J, L have their 
critical points determined to machine accuracy. In fact it can be shown (Joyce and 
Guttmann 1973) that these functions can be determined precisely by the RR method, 
given 10 series coefficients. For the other series the RR method is clearly more accurate 
than any other for function C. For functions F, H, I it is of comparable accuracy to the 
ER method. The ER method could, however, be called a ‘quasi-biased’ method since it 
includes the exponent estimate y = 1.5. Leaving aside the ER results we find that the RR 
method is now the most accurate method for functions F and I as well, and is of com- 
parable accuracy to the R, N and P methods for functions D, E, G, H, K, but in each case 
c 1  is slightly worse than czO for the [ 1, D, M ]  GPA. 

Turning now to table 3 we give the Q, values for estimates of the critical exponent y .  
Exactly the same conclusions apply as for Q, values of x, in table 2. The asterisks for 
example L imply that the output indicates the presence of a confluent logarithmic 

Table 3. Summary of analysis of the 12 test series for estimates of the critical exponent 
y = 1.5. The numbers quoted are the values of the parameter c = -Ig(Ay/y). 

Test Number R N P GPA 

series of terms [ I ,  D, MI 
used 

10 
15 
20 

10 
1s 
20 

10 
15  
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 

2.4 
7.1 

12.8 

1.3 
1.6 
I .7 

1 .o 
1.3 
1.4 
0.8 
1.4 
2.0 
0.7 
1.3 
1.7 
0.8 
1.1 
1.5 

0.6 
0.6 
0.9 
0.7 
0.9 
1.3 

1.7 
2.6 
3.0 > 10 

1.7 
2.3 2.5 
3.4 3.3 1.9 

1.2 
2.7 2.2 
3.7 2.4 1.5 

0.7 
1 .o 
1.9 4.3 
0.4 
1.4 
2.2 1.7 

0.3 
0.3 
1.2 1.5 
0.4 
0.4 
1.3 I .2 
0.7 
0.9 
1.3 1.7 

RR 

> 13 
> 13 
> 13 
> 13 
> 13 
> 13 

1.9 
3.3 

> 13 
- 

0.8 
2.4 
__ 
0.7 
2.1 

- 0.4 
0.5 
2.8 
1.7 
1.2 
0.7 
2.5 
1.7 
1.2 

Number 
of terms 

used in RR 

10 
13 
19 

10 
13 
19 

10 
13 
19 
10 
13 
19 
10 
13 
19 
10 
13 
19 
10 
13 
19 
10 
13 
19 
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Table h o n t i n u e d  
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~~ 

Test Number R N P GPA 

series of terms [I, D, Ml 
used 

RR Number 
of terms 

used in RR 

10 
1 15 

20 
10 

J 15 
20 
10 

K 15 
20 
10 

L 15 
20 

0.1 - 0.4 
0.1 2.3 
0.4 1.3 0.4 
0.2 1.4 
0.5 2.2 
0.8 2.7 6.3 
0.1 0.1 
0.5 1.7 
0.8 2.3 5.5 
0.3 0.7 not 
0.4 0.8 0.8 given 
0.5 0.9 0.8 

0.9 10 
0.8 13 
1.5 19 

> 13 10 
> 13 13 
> 13 19 
1.2 10 
1.9 13 
3.4 19 

< 13* 10 
> 13* 13 
> 13, 19 

singularity whose precise nature is revealed by further analysis (Joyce and Guttmann 
1973). To illustrate this, the output for the case n = 13, corresponding to R ~ , ~ ,  is given 
in table 4. The fact that the' real root is printed out as a double root indicates a confluent 

Table 4. The output from the recurrence relation program for test series L assuming that 
13 series coefficients are known. The double real root at x = 1 indicates a confluent 
logarithmic singularity (see text). 

Real root Imaginary root Real exponent Imaginary exponent 

1 W M M W O O O  - 04oooooo143439 - 283.28308081 
1.000000000000 -0OOOOIMO143439 -283.28308081 

-0.341 142903637 - 2.5947355044 0.999999999971 0.000000000012856 
-0.341 142903637 2.59473 55044 1.000000000001 -0.000000000024339 

logarithmic singularity. An identical situation exists in the Onsager solution for the 
internal energy of the square lattice Ising model. In this situation the exponent printed 
out is spurious and is a measure only of the working precision of the arithmetic unit 
on the computer. Further analysis (Joyce and Guttmann 1973) assuming a confluent 
singularity is needed to identify the correct exponent. The other two singularities are 
also spurious and are analogous to the branch cuts placed down by the Pade method. 

In table 5 we list the c, values for biased estimates of the exponent y .  These estimates 
are biased in that we have fed in the position of the critical point. It is no more difficult 
to do this in the RR method than in the Pad6 method. As can be seen from the table, the 
RR method is demonstrably superior for functions A, B, C, F ,  H, I, J, K, L and of com- 
parable accuracy to existing methods for the remaining functions D, E, G. 

Finally, in table 6 we list the c, values for all the identifiable critical points, not just 
the physical singularity. Again the RR method is superior for functions A, B, C, F ,  I, J, K. 
For functions D, E the RR method is about as good as the GPA or P method, while for 
functions G, H the standard Pad6 method has the edge over both our method and the 
GPA method. 
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4. Conclusion 

Table 5. Summary of analysis of the 12 test series for biased estimates of the critical exponent 
y = 1.5, given the critical point x, = 1. The numbers quoted are the values oftthe parameter 
6 = - ~ ( A Y / Y ) .  

Test Number R N P 
series of terms 

used 

RR Number 
of terms 

used in RR 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 
10 
15 
20 

4.1 
9.4 

15.4 
1.7 
1.9 
2.0 
1.3 
1.5 
1.6 
1.5 
2.6 
3.7 
1.6 
1.8 
2.0 
0.8 
1.3 
1.6 
1.3 
1.4 
1.5 
1.5 
1.6 
1.6 
0.8 
0.8 
1.2 
0.7 
1.2 
1.4 
0.7 
1.2 
1.4 
0.5 
0.6 
0.7 

2.4 
3.0 
3.6 

2.5 2.7 
3.8 3.3 
5.8 3.7 
1.8 1.7 
3.6 2.4 
5.4 3.1 

1 .o 
1.9 
2.3 
1.3 
1.8 

2.8 2.4 
0.4 
1.2 

1.8 1.8 
0.8 
1.1 
2.0 
0.5 
1.2 
1.7 

0.6 
0.8 
1.7 
1.7 
2.7 
3.2 
I .4 
2.0 
2.5 

0.8 0.8 
0.9 0.9 
0.9 0.9 

> 13 
> 13 
> I3 
> I3 
> 13 
> 13 

2.0 
3.4 

> I3 
1.7 
1.5 
3.5 
1.5 
1 .o 
3.5 
1.5 
2.0 
3.5 
1.6 
0.9 
1.5 
1.8 
1.7 
2.0 
1.1 
0.9 
2.0 

> 13 
> I3 
> 13 

2.8 
3.1 
5.3 

> 13 
> 13 

13 

I O  
13 
19 
I O  
13 
19 
10 
13 
19 
10 
13 
19 
10 
13 
19 
10 
13 
19 
10 
13 
19 
10 
13 
19 
10 
13 
19 

10 
13 
19 
10 
13 
19 
10 
13 
19 

As can be seen from the numerical evidence, the RR method constitutes a valuable tool 
in the analysis of series expansions. Its worth in a practical example has already been 
demonstrated by Wheeler et a1 ( 1  974) who use the method to analyse spectral densities 
using modified moments. The method is currently being applied to a number of Ising 
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Table 6. Comparison of accuracy of estimates (assuming 19 or 20 terms) of the locations of 
the singularities in functions A-K. The numbers quoted are the values of the parameter 
( =  - l g ( ~ A x ~ ~ / ~ x ~ ~ ) ,  where xt refers to the ith singularity of the test function. 

~~ ~ 

Test I Exact location of c2,, for cz0 for usual c L 9  for RR 
series singularity xb generalized Pade analysis 

approximant approximant 
analysis analysis 

A 1 
B 1 
C 1 

1 
2 
3,4 
5 
1 
2 

5 
1 
2 
3,4 
5 
1 
293 
495 
6 7  
1 
233 
4,5 
6 7  
1 
233 
495 
6 7  
1 

D 

E 3,4 

G 

H 

I 

J 2  

K 2  
1 

1.oooO 
1 ~oooo 
1 ~oooo 
1 ~oooo 

- 1.7500 
& 2WOOi 

2.2857 
1 ~oooo 

- 1.7500 
k 20000i 

2.2857 
1 cml 

- 1.7500 
f 20000i 

2.2857 
1 .oooo 
1 ~oo00 f 0.48 16i 
l.ooOO+ 1.2540i 
1~oooO f 4.3813i 
1 ~oooo 
1~oooO + 0.48 16i 
1~oooOk 1.25401 
1~oooO f 4.38 13i 
1 ~oooo 
1~oooO f 0.4816i 
1MH)(l k 1.25401 
14!4NO k 4.38 13 i 
1 ~oooo 

- 1,2500 
1 acal 

- 1.2500 

> 10 
3.5 
3.1 
5.4 
1.7 
1.7 
1.1 
3.8 
1.4 
0.7 
- 

2.9 
1.6 
1.5 
- 

2.3 
0.5 
- 

- 

2.5 
0.6 
- 
- 

1.6 
- 
- 
- 
7.2 
2.0 
6.5 
2.1 

4.8 
5.1 
4.0 
3.5 
2.2 
2.0 

3.7 
2.2 
1.8 

- 

- 

2.7 
2.1 
2.0 

2.7 
0.9 
0.5 
0.5 
2.4 
0.9 
0.5 
0.2 

2.2 
1 .o 
1.0 
0.7 
4.4 
4.2 
3.9 
2.7 

- 

7>13 
> 13 
> 13 

4.0 
4.7 
2.0 

3.6 
1.9 
1.2 

-0.1 
5.4 
3.0 
2.0 

2.0 
0.6 
0.9 

2.0 
- 0.2 

0.6 

- 

- 

- 

- 

2.6 
1.2 
1.4 
0.7 

> 13 
> 13 

5.3 
5.1 

model and spherical model series by Guttmann, Joyce and Rehr and it is hoped to 
publish these results shortly. A ful!er discussion of the method and its generalizations 
will be published shortly. Generalizations that have proved valuable include extensions 
to higher-order recurrence relations, specification of critical points and critical exponents 
of one or more singularities, specifications of the positions of double roots and their 
exponents, and variations in the nature ofthe analytic structure ofthe differential equation 
corresponding to the recurrence relation, both at the origin and at infinity. 

It should be noted that for the standard methods of analysis, such as the R and P 
methods, there do exist results on convergence that are sometimes applicable. At the 
present state of development, no such results are known for the RR method. 
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Note also that the RR method gives an exact representation for a wider class of 
functions than do the other methods tested, but there are several functions here which 
cannot be represented exactly by recurrence relations-at least not without a pro- 
hibitively large number of terms-in the recurrence relation. 
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